Classifying and segmenting microscopy images with deep multiple instance learning

نویسندگان

  • Oren Z. Kraus
  • Jimmy Ba
  • Brendan J. Frey
چکیده

MOTIVATION High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning approaches that learn feature representations directly from pixel intensity values have dominated object recognition challenges. These tasks typically have a single centered object per image and existing models are not directly applicable to microscopy datasets. Here we develop an approach that combines deep convolutional neural networks (CNNs) with multiple instance learning (MIL) in order to classify and segment microscopy images using only whole image level annotations. RESULTS We introduce a new neural network architecture that uses MIL to simultaneously classify and segment microscopy images with populations of cells. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. To facilitate aggregating across large numbers of instances in CNN feature maps we present the Noisy-AND pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using whole microscopy images with image level labels. We show that training end-to-end MIL CNNs outperforms several previous methods on both mammalian and yeast datasets without requiring any segmentation steps. AVAILABILITY AND IMPLEMENTATION Torch7 implementation available upon request. CONTACT [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infant Head Circumference Measurement Using Deep Learning Techniques

Infant's head circumference measurement and and its growth monitoring plays a crucial role in diagnosis the diseases which cause a deformation in the infant's head. Due to the fact that the contact measurement, which is performed using a tape measure and a caliper, has problems such as transmitting disease, infecting, not comfortable and disruption relaxing the baby, going to non-contact measur...

متن کامل

Object cosegmentation using deep Siamese network

Object cosegmentation addresses the problem of discovering similar objects from multiple images and segmenting them as foreground simultaneously. In this paper, we propose a novel end-to-end pipeline to segment the similar objects simultaneously from relevant set of images using supervised learning via deep-learning framework. We experiment with multiple set of object proposal generation techni...

متن کامل

Augmented Reality Meets Deep Learning for Car Instance Segmentation in Urban Scenes

The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and syn...

متن کامل

A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching.

We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model that captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model in...

متن کامل

Fluorescence Microscopy Image Segmentation Using Convolutional Neural Network With Generative Adversarial Networks

Recent advance in fluorescence microscopy enables acquisition of 3D image volumes with better quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images. 3D segmentation using deep learning has achieved promising results in microscopy images. One issue is that deep learning techniques require a large set of groundt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016